RAPID COMMUNICATIONS

PHYSICAL REVIEW E

VOLUME 49, NUMBER 2

FEBRUARY 1994

Growth instabilities in mechanical breakdown

E. Louis
Departamento de Fisica Aplicada, Universidad de Alicante, Apartado 99, E-03080 Alicante, Spain

F. Guinea
Instituto de Ciencia de Materiales, Consejo Superior de Investigaciones Cientificas, Facultad de Ciencias C-III,
Universidad Auténoma de Madrid, E-28049 Madrid, Spain
(Received 1 June 1993)

A linear stability analysis of a circular crack growing in an elastic medium in two dimensions
is presented. Two boundary conditions at the outer boundary are considered, namely, a constant
strain and a constant pressure. Size effects are included by assuming a finite distance between the
inner and the outer boundaries. If the outer boundary is placed at infinity, the result for the ratio
between the instantaneous rates of growth of the perturbation and that of the circular crack is twice
that obtained for growth in fields governed by the Laplace equation (diffusion or electrostatic fields)
no matter which of the two boundary conditions is imposed. This result is in line with the smaller
fractal dimensions obtained in the case of mechanical breakdown.
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Linear stability analysis has been widely used to illus-
trate the possibility of instabilities in a large variety of
growth problems [1-4]. In particular, these instabilities
are responsible for the first stages of the formation of
the complex structures found in diffusion-limited aggre-
gation (DLA) [5] and dielectric breakdown (DB) [6] mod-
els. Recently the more complex growth problem of me-
chanical breakdown [7-9] has been also considered from
this point of view [10,11]. Unfortunately in these studies
the smooth growing surface was found to be unstable only
under rather artificial boundary conditions. For instance,
Ref. [10] considered the case of a flat crack assuming the
existence of a tangential force at the crack surface. On
the other hand, in Refs. [11,12] it was claimed that a cir-
cular crack was only unstable if the crack had a pressure
inside, a rather trivial result. It was also stated that no
instabilities should be expected in stretched membranes,
just the case for which fractal patterns have been ob-
tained [7-9]. It should be pointed out that although in
those works a finite threshold was included [11,12], their
conclusions do not change if this threshold vanishes.

In the present work we investigate this question for
two boundary conditions that, as shown in Refs. [7-9],
produce fractal patterns, namely, a stretched membrane
and an external pressure at the outer boundary. We only
consider the case of two dimensions (2D). The assump-
tion of a flat crack “front,” stretching between the two
edges of the system, requires unphysical boundary con-
ditions. In particular, a situation with constant internal
pressure cannot be achieved using any sensible boundary
condition far from the front. An important ingredient
that was overlooked in Refs. [11,12] is included, namely,
a vector normal to the perturbed surface has two nonzero
components. This is essential in the case of elasticity due
to the tensorial character of the fields [13]. In fact, this
is the key point in obtaining the correct answer to the
problem. We also include size effects by considering that
the crack surface and the outer boundary are not sepa-
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rated by an infinite distance, as has been already done
for Laplacian fields [12, 14, 15]. If the outer boundary
is placed at infinity, the results indicate that the circu-
lar crack is unstable to perturbations of wave number
m > 1, as in the Laplacian case [1, 5], although in the
present case the ratio between the instantaneous rates of
growth of the perturbation and that of the circular crack
is a factor of 2 larger.

Let us consider a circular crack of radius r = R; grow-
ing in an isotropic elastic medium characterized by the
two Lamé coefficients A and p [13], at a rate determined
by the boundary conditions at an outer boundary R, to
be defined below. What we shall investigate is the sta-
bility of this circular crack upon small perturbations of
wave number m (m being a positive integer), such as
T, = Ry + ee'™ where € < R;. Polar coordinates and
a polar reference frame will be used hereafter. Once the
circular front is perturbed, the most general solution of
the Lamé equations [13] can be written as

up(7,0) = v, (r) + €Uy ()™, (1a)

ug(r,0) = eUg(r)ei"‘e, (1b)

where u(r,0) and v,(r) are the displacement fields in
the perturbed and unperturbed cases, respectively. The
functions U, (r) and Uy(r) are given by the following ex-
pressions:

Up(r) = ar’™ ™ 4+ br 7™ 4 cr™ ™t 4 dr™— 1,

(2a)

Up(r) = ayer* ™™ —br "™ 4 cyr™t! 4+ dr™~ L

(2b)
The constants v, and «. in Egs. (2) are
m—4(1 —v) m+4(1 —v)
a — ) c = ) 3
w-2-m = G eime ©

where v = A/[2(\ + p)] is Poisson’s ratio [13]. In writing
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Egs. (2) we have assumed that Rj, the radius of the outer
boundary is not infinitely larger than R;. In this case
the positive powers are not unphysical.

Before imposing the boundary conditions at the crack
surface we have to write the unit vectors normal (n) and
tangential (t) to the crack surface, which, linearizing in
€, take the form

€M ;.0 €M ;0
= - t=(— 1]). 4
" (1’ R, ¢ ) ’ ( R, o ) )

The fact that the normal to the surface has a § compo-
nent proportional to € was not taken into account in Refs.
(11, 12]. It should be noted that in the case of Laplacian
fields this effect gives a second order correction that can
be neglected. In the present case, and due to the tenso-
rial nature of the field, this correction is of first order and
has to be included. The boundary condition at the crack
surface accounts for the fact that no stresses propagate
normal to this surface [13]. Both components of the force
normal to the surface (N) have to be zero,
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Ny = 06,1 + 009 = 09r(R1) — ——e

(5b)

where 0,,, 099, and o,¢ are the components of the stress
tensor. As regards the outer boundary (r = Rz), two
boundary conditions are considered in this work, namely,
a constant strain (uo) and a constant pressure (p). In the
first case the resulting equations are

'Ur(RZ) = Uy, (63')

Equations (5a) and (6a) give the displacements in the
unperturbed case (the index cs denotes constant strain)

Vr (1) = Bes [(1 —-2V)r + —Izi] ,
Ug

ﬁca e ——
1-20)R, + 2

(7)

On the other hand Eq. (6b) combined with Egs. (5)
give the following set of equations for the constants in

Ny = 0rrnr + 0rong = 0pp(p) = 0, (5a) Egs. (2):
|
m(l - m) -2 m(m + 1) 2m 2m—2 3 __ 2ﬂcsm
41/_2‘ma+(m-l-1)R1 b+4y_2+mR1 c+ (m—1)R3 d_R}_"" (8a)
M)—_Za _ (m + 1)R1_2b+ m(m - 1) - 2Rfmc+ (m _ l)Rf"‘_zd - _ 205 (8b)

w—-2-m w—-24+m
a+R;%b+ R2™c+ R2™2d =0,

Yea — R72b + v.R¥™c 4+ R2™2d = 0.

In the case of a constant pressure p at the outer bound-
ary Egs. (6) are replaced by

Urr(R2) =p UrG(RZ) =0. (9)

As a result the constant 3.5 in Eq. (7) is replaced by
R2

,Bcp = L (10)

(1—2v)(R; - R})
where the index cp denotes constant pressure, and the set
of equations that give the four constants in Egs. (2) has
to be modified as follows. In the first two we only need
to replace 8., by (., whereas the third and the fourth
are obtained by replacing in Egs. (8a) and (8b) R; by R,
and the right-hand side by zero.

As in Refs. [7-9] we assume that the growth rate is pro-
portional to the modulus of the tangential tension (T).
This is easily calculated from the stress tensor calculated
at the crack surface (r = rp) and the tangential vector
given in Eq. (4). The result is
tem

T = 06s(rp) (72—1—?"‘9, 1) . (11)

1-m?
Rl

[
Thus the instantaneous growth rate is given by

Ry + ée'™® = Cagy(ry), (12)

where C is a constant. Then the result for the ratio be-
tween the instantaneous rates of growth of the perturba-
tion (€) and that of the disk (R;) in the case of constant
strain is

2RTH [ m(m + 1)
Bes v —-2+m

am = 2(m—1)— c+ (m—1)R;%d|.

(13)

In the case of constant pressure (3., should be replaced
by Bcp, and the constants ¢ and d by those corresponding
to this boundary condition. It is interesting to note that
if the outer boundary is placed at infinity, the result for
Qm is

Ay = 2(m — 1) (14)

for the two boundary conditions here considered. We
note that a,, is twice that found in the case of growth in
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fields governed by the Laplace equation (DLA and DB)
[1,5]. This result is in accordance with an analysis of the
field singularities along the lines of Ref. [16]. In fact, the
singularities that appear at wedges in an elastic medium
[10,17] are stronger than those found in Laplacian fields
[16]. As a consequence the predicted fractal dimensions
for the elastic case [8] are smaller than those obtained in
Ref. [16] for Laplacian fields, in agreement with numerical
results.

We have studied the case of a finite R; by numerically
solving Egs. (8) for the constants a—d, and substituting
the results for ¢ and d in Eq. (13). The results for a,,
are shown in Fig. 1. The following features are worthy of
comment: (i) the results for constant strain are always
below the asymptotic value of Eq. (14), whereas the op-
posite holds for constant pressure; (ii) the asymptotic
value is reached faster as m increases; and (iii) as R,
tends to R;, a,, increases up to oo, in the case of a con-
stant pressure, whereas for constant strain it decreases
to —%; in both cases these values are independent of m.
It is interesting to compare these results with those ob-

tained for Laplacian fields. In the latter case a;, is given
by

_ (Rz/Ry)*™ %1
A = mm—l -1, (15)

where + signs correspond to fixing either the potential
or its derivative at the outer boundary (Dirichlet or von
Neumann boundary conditions). We note that this equa-
tion shows a behavior similar to that found for a,, in the
case of elasticity. For instance, for Ry/R; = 1+ ¢, where
€ < 1, am tends to either 1/e—1 (for all m) or m?e—1, for
either constant potential or constant field. We also note
that the results for a,, obtained in the case of elasticity
(see Fig. 1) are always larger than the values given by Eq.
(15) except for Ry very close to R and fixed strain at
the outer boundary (as an example we note that for m=2
and m=4 this occurs for R; < 1.05R; and R, < 1.02R;,
respectively). Thus, only in a range of R, of minor inter-
est, the instabilities in Laplacian fields can be stronger
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FIG. 1. Results for the ratio between the instantaneous
growth rates of the perturbation and that of the circular crack
(am,m = 2,4) as a function of Rz/R;, for v = 0.25 (A =
p) and the two boundary conditions at the outer boundary
(r = R2) considered in this work, namely, constant strain
(continuous lines) and constant pressure (chain lines). At
R; = R, the values of o, for constant strain and pressure are
—% and oo, respectively. The horizontal chain lines indicate
the values of a,, for the outer boundary at infinity.

than in the case of elasticity.

In conclusion, we have presented a study of growth
instabilities in mechanical breakdown and obtained re-
sults that are similar to those already found for growth in
Laplacian fields, and in variance with previous studies of
the problem [11]. The most important conclusion is that
growth in an elastic medium results in being more prone
to instabilities of the Mullins-Sekerka type than growth
in Laplacian fields. This is in line with the smaller fractal
dimensions found in numerical simulations of mechanical
breakdown [7-9] as compared to those obtained in the
cases of DLA [5] and dielectric breakdown [6].
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